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Training Population Optimization for Genomic Selection
Inés Berro, Bettina Lado, Rafael S. Nalin, Martin Quincke, and Lucía Gutiérrez*

ABSTRACT  The effectiveness of genomic selection in breeding 
programs depends on the phenotypic quality and depth, the 
prediction model, the number and type of molecular markers, 
and the size and composition of the training population (TR). 
Furthermore, population structure and diversity have a key role 
in the composition of the optimal training sets. Our goal was 
to compare strategies for optimizing the TR for specific testing 
populations (TE). A total of 1353 wheat (Triticum aestivum L.) and 
644 rice (Oryza sativa L.) advanced lines were evaluated for 
grain yield in multiple environments. Several within-TR optimization 
strategies were compared to identify groups of individuals with 
increased predictive ability. Additionally, optimization strategies 
to choose individuals from the TR with higher predictive ability for 
a specific TE were compared. There is a benefit in considering 
both the population structure and the relationship between 
the TR and the TE when designing an optimal TR for genomic 
selection. A weighted relationship matrix with stratified sampling 
is the best strategy for forward predictions of quantitative traits in 
populations several generations apart.

Genomic selection (GS) consists of selecting individ-
uals from a TE on the basis of genotypic values pre-

dicted from their genome-wide molecular marker scores 
and a statistical model adjusted with individuals that have 
phenotypic and genotypic information (Meuwissen et al., 
2001). The group of individuals that were phenotyped and 
genotyped is called the TR (Heffner et al. 2009).

Genomic selection is preferred over marker-assisted 
selection approaches for complex traits (Habier et al., 
2007; Lorenz et al., 2011) because it includes all molecular 
markers in the prediction model and because it considers 
the quantitative trait loci of both major and minor effects 
(Xu, 2003; Jannink et al., 2010; Poland and Rife, 2012; 
Smith et al., 2018). Simulated and empirical cross-valida-
tion studies in plants show that GS can accelerate prog-
ress in plant breeding compared with marker-assisted 
selection, resulting in higher genetic gains (Hayes et al., 
2009; Crossa et al., 2010; Heffner et al., 2011), higher 
profit per unit of cost, and superior progenies (Bernardo 
and Yu, 2007; Heffner et al., 2009, 2011; Heslot et al., 
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core ideas

•	 Training populations can be optimized for specific 
testing populations.

•	 Optimized training populations are smaller, more 
related, and more predictive.

•	 Stratified sampling with a relationship matrix 
weighted by marker effect is optimal.

Abbreviations:  AYT, advanced yield trial; BLUE, best linear unbiased 
estimate; CDmean, average coefficient of determination; EYT, elite yield trial; 
GBLUP, mixed model best linear unbiased prediction; GBS, genotyping-by-
sequencing; GS, genomic selection; GY, grain yield; INIA, Instituto Nacional de 
Investigación Agropecuaria (National Agricultural Research Institute); IRBP, INIA 
rice breeding program; IWBP, INIA wheat breeding program; OTR, optimized 
training population; PEVmean, prediction error variance; PYT, preliminary 
yield trial; sBLUP, super best linear unbiased prediction; SNP, single nucleotide 
polymorphism; taBLUP, trait-specific relationship matrix best linear unbiased 
prediction; TE, testing population; TR, training population; WC, weighted additive 
relationship matrix with a stratified sampling accounting for genetic cluster.
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2012; Poland and Rife, 2012; Lado et al., 2017). Genomic 
selection is also useful when phenotypic information is 
not available, is not reliable because of low heritability, is 
costly or labor-intensive (Lado et al., 2018), or when there 
is a strong genotype × environment interaction with the 
target environment.

The most widely used methods of estimating  the 
genotypic values are ridge regression, which estimates 
marker effects by regressing the trait values on marker 
genotypes, and the mixed model best linear unbiased 
prediction (GBLUP), which uses the genomic-estimated 
relationship matrix to model the correlation among indi-
viduals (VanRaden, 2008). The genotypic values from 
ridge regression and GBLUP are equivalent (Habier et al., 
2009; de los Campos et al., 2012).

The main factors affecting the predictive abilities 
of GS models are the number and quality of phenotypic 
observations of the TR (Heffner et al. 2009; Jannink et al. 
2010; Cooper et al., 2014; Lado et al., 2018), the genome 
coverage of molecular markers in both the TR and the 
TE (Solberg et al., 2008; Poland and Rife, 2012), the size 
and composition of the TR (Jannink et al., 2010; Hef-
fner et al., 2011; Wientjes et al., 2013), and the relation-
ship between the TR and the TE (Pszczola et al., 2012; 
Wientjes et al., 2013; Crossa et al., 2014; Hickey et al., 
2015). The amount of phenotypic information used in GS 
has increased over recent years with the development of 
high-throughput phenotyping methods and the integra-
tion of phenotypic information from different breeding 
programs in the same geographical region. However, 
obtaining more phenotypic information of better qual-
ity remains a challenge for improving the selection of 
superior individuals (Araus and Cairns, 2014; Cooper 
et al., 2014). Studies have shown that the higher the 
heritability, the higher the prediction accuracy (Combs 
and Bernardo, 2013; Isidro et al., 2015). In addition, the 
more complex the trait, the poorer the prediction accu-
racy regardless of the heritability (Combs and Bernardo, 
2013). The number and genome-wide coverage of molec-
ular markers affect the prediction accuracy, with more 
molecular markers providing higher predictive ability 
until a plateau is reached that depends on the population 
size, structure, and diversity (Lorenzana and Bernardo, 
2009; Gorjanc et al., 2017). More molecular markers are 
generally needed to maintain the prediction accuracy 
over cycles of selection through a better representation 
of the linkage disequilibrium structure (Asoro et al., 
2011; Habier et al., 2007; Heffner et al. 2011; Lorenzana 
and Bernardo, 2009; Norman et al., 2018). Additionally, a 
large number of molecular markers is required to capture 
the effect of all quantitative trait loci when the TR used is 
genetically diverse (Norman et al., 2018).

The diversity of the TR affects the accuracy of the 
predictions in many ways. Several studies have shown that 
the larger the TR, the higher the predictive ability (Habier 
et al., 2007; Hayes et al., 2009; Lorenzana and Bernardo, 
2009; Asoro et al., 2011; Crossa et al., 2014). Furthermore, 
low prediction accuracies are obtained when the TR 

has narrow genetic diversity because it is not possible to 
accurately estimate all the genotypic effects that explain 
the variation in the phenotype (Norman et al., 2018). 
On the other hand, increasing the diversity of the TR by 
using individuals that are genetically distant from the TE 
decreases the prediction accuracy (Crossa et al., 2014).

Therefore, one of the most challenging aspects of 
effective GS is the design of an optimal TR. After a good 
marker system and high-quality phenotyping have been 
established, choosing an optimal TR is not trivial. On the 
one hand, increasing the TR population size increases 
the prediction accuracy (Lorenzana and Bernardo, 2009; 
Asoro et al., 2011). However, because GS models rely on 
linkage disequilibrium, some studies have found that 
smaller, more related populations might be optimal 
(Crossa et al., 2010), whereas other studies have argued 
that increasing the population size, even at the expense of 
genetic relatedness, might be optimal (Asoro et al., 2011) 
for predicting a new population (i.e. the TE). On the other 
hand, genetic diversity within the TR is fundamental for 
estimating marker effects appropriately (Norman et al., 
2018). Finally, the region in the genome where individuals 
are more similar also affects genomic predictions, espe-
cially for oligogenic traits (Zhang et al., 2010; Wang et al., 
2018). Some strategies have been designed to weight genetic 
relationship matrices on the basis of their marker effects 
regardless of their position or linkage disequilibrium 
[trait-specific relationship matrix best linear unbiased 
prediction (taBLUP)] (Zhang et al., 2010), or weighting 
only bin-selected quantitative trait nucleotides [super best 
linear unbiased prediction (sBLUP)] (Wang et al., 2014). 
Several attempts have been made to optimize the TR for a 
given TE based on maximizing the accuracy of the predic-
tion. Rincent et al. (2012) proposed an iterative process of 
exchanging individuals to maximize a function derived 
from the generalized average coefficient of determination 
(CDmean), defined as the squared correlation between the 
true and the predicted contrast of genetic values (Laloë, 
1993) that maximized prediction accuracy between the 
TR and a TE, and the use of the prediction error variance 
(PEVmean). Isidro et al. (2015) used these criteria and 
three different TR optimization methods based on strati-
fied sampling and showed that population structure has 
a large effect on optimizing the TR and the best methods 
depend on it. When the population structure effect was 
small, the CDmean performed adequately. However, with a 
strong population structure, the best strategy for optimiz-
ing the TR was a stratified sampling based on the popu-
lation structure (Isidro et al., 2015; Rincent et al., 2017). 
Because these methods rely on GBLUP theory, they work 
well with highly polygenic traits but low accuracy would be 
found in oligogenic traits determined by a few large-effect 
quantitative trait loci (Rincent et al., 2017; Wang et al., 
2018). A method that would be superior across populations 
and traits could not be found (Rincent et al., 2012; Isidro et 
al., 2015). In summary, the composition of the TR should 
have a balance between the within-population genetic 



berro et al.	 3 of 14

diversity, the relatedness with the TE, and the regions of 
the genome where individuals are more similar.

The goal of this study was to compare strategies for 
optimizing the TR for genomic prediction models in a rice 
and a wheat breeding program. First, we evaluated how the 
size, genetic relationships among individuals, and popula-
tion structure affect the prediction ability within the TR. 
Second, we proposed some strategies for optimizing the 
TR based on different methods that account for the genetic 
relationship between the TR and the TE and we compared 
these to other methods proposed in the literature.

MATERIALS AND METHODS

Wheat Population

Plant Material
A total of 1353 spring bread wheat advanced inbred 
lines from the Wheat Breeding Program of the Instituto 
Nacional de Investigación Agropecuaria (INIA, National 
Agricultural Research Institute) of Uruguay (IWBP) 
were used. The IWBP lines consisted of all the advanced 

inbred lines from the preliminary yield trials (PYT) 
from 2010, 2011, and 2013, as well as the lines from the 
advanced yield trials (AYT) and elite yield trials (EYT) 
from 2010 (Fig. 1).

Phenotyping
Grain yield (GY) evaluations were conducted in five 
locations in Uruguay from 2010 to 2014, including one 
location with four sowing dates. Locations used to evalu-
ate the genotypes were Dolores (33°50¢S, 58°14¢W; 15 m 
a.s.l.), Durazno (33°33¢S, 56°31¢W; 91 m a.s.l.), La Estan-
zuela (34°20¢S, 57°42¢W; 81 m a.s.l.), Young (32°76¢S, 
57°57¢W; 85 m a.s.l.), and Ruta2 (33°45¢S, 57°90¢W; 95 m 
a.s.l.). For a full description of the number of lines evalu-
ated in each location and years, see Lado et al. (2016).

Genotyping
Genotyping-by-sequencing (GBS) data were obtained 
for all 1353 IWBP lines. Tissue was collected from plants 
grown in either the field or the greenhouse. The cetyl tri-
methylammonium bromide method (Saghai-Maroof et al., 
1984) was used to isolate DNA for the GBS protocol as in 

Fig. 1. Structure of the advanced wheat inbred lines from the Instituto Nacional de Investigación Agropecuaria Wheat Breeding Program 
and their genetic relationships. (A) The composition of the training population (TR) and the testing population (TE), with elite yield trials (EYT), 
advanced yield trials (AYT) and preliminary (PYT) yield trials from 2010 and 2011 comprising the TR. The PYT from 2013 was the forward TE. 
(B) Dendrogram of the training population constructed with the additive relationship matrix (K) where five groups were identified.
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Poland and Rife (2012). The TASSEL-GBS pipeline (Glau-
bitz et al., 2014) was run with a modification for nonrefer-
ence genomes (Poland and Rife, 2012). Briefly, markers 
with a minor allele frequency below 1% or with more than 
80% missing data were discarded. Marker–data imputa-
tion was conducted via the realized relationship matrix 
through the multivariate normal expectation maximiza-
tion method of the rrBLUP package (Endelman, 2011) in R 
software (R Development Core Team, 2018). We identified 
81,999 single nucleotide polymorphisms (SNPs).

Phenotypic Data Analysis
Best linear unbiased estimates (BLUEs) of GY were 
obtained for all genotypes present in each trial by the 
nlme package (Pinheiro et al., 2007) in R software (R 
Development Core Team, 2018). Field analysis was con-
ducted according to the experimental design. Since the 
PYT consisted of a series of smaller alpha-design trials 
grouped by heading date and connected through com-
mon checks, the following model [Eq. 1] was used to 
estimate genotypic means for each heading date group in 
each environment (i.e. combination of location and year):

( ) ( )ijkl i j k j l kj ijkly =m+a +l +g +b +e ,� [1]

where m is the overall mean, a i is the effect of the ith gen-
otype, lj is the effect of the jth trial, gk(j) is the effect of the 
kth replication within the jth trial, b l(kj) is the effect of the 
lth incomplete block within the kth replication and the jth 
trial, and eijkl is the residual error from the ith genotype in 
the lth block within the kth replication in the jth trial, with 
lj, b l(jk), and eijkl as the random variables lj ~ N(0,sl

2), 
b l(jk) ~ N(0,sb

2), and eijkl ~ N(0, se
2), all of which are inde-

pendent. The AYT and EYT consisted of alpha-designs 
grouped by heading date; therefore, the following model 
[Eq. 2] was used to estimate genotypic means for each 
heading date group in each environment (i.e., combina-
tion of location and year):

( )i jk i j k j ijky =m+a +g +b +e ,� [2]

where m , ai, g j, bk(j), and eijk, were defined as in Eq [1], 
with bk(j) and eijk as the random variables bk(j) ~ N(0,sb

2) 
and eijk ~ N(0, se

2), both of which are independent.
To decrease the genotype × environment interactions, 

Mega-Environments 1 and 2, as identified in Lado et al. 
(2016) were used for this study. We did not use Mega-
Environment 3 because a large genotype × environment 
interaction exists between Mega-Environment 3 and 
Mega-Environments 1 and 2. The mega-environments 
were constructed as groups of environments with low 
within genotype × environment interaction and high 
among genotype × environment interaction. Mega-Envi-
ronments 1 and 2 include all locations from 2010, 2011, 
and 2013 and one of the La Estanzuela environments from 
2014. They have a high correlation between environments. 
The final model used to obtain genotypic means across 
environments was:

( )ijk i j k j ijky =m+a +d +g +e ,�  [3]

where m , ai, and gk(j), were defined as in Eq. [1]; d j is the 
jth environment (i.e., location and year) within a mega-
environments, with gk(j), and eijk being the random vari-
ables gk(j) ~ N(0,s2

g) and eijk ~ N(0, se
2), both of which 

are independent. The BLUEs were estimated for each 
genotype by the nlme package (Pinheiro et al., 2007) in R 
software (R Development Core Team, 2018).

Rice Population

Plant Material
A total of 644 lines from the INIA Rice Breeding Program 
of Uruguay (IRBP) were used. The population consisted of 
325 lines from the O. sativa ssp. indica, 314 lines from O. 
sativa ssp. japonica (tropical japonica), two indica cultivars 
[El Paso 144 (Yan et al., 2007) and INIA Olimar (Blanco 
et al., 1993; Instituto Nacional de Semillas, 2017) that are 
the most widely grown indica cultivars in Uruguay, and 
three tropical japonica cultivars [INIA Parao (Molina et 
al., 2011), INIA Tacuarí (Blanco et al.,1993), and INIA 
Caraguatá (Blanco et al., 1993)]. All cultivars were used as 
checks in all phenotyping experiments.

Phenotyping
Rice lines were evaluated for GY in the Experimental 
Unit of Paso de la Laguna (33°16¢S, 54°10¢W), Treinta y 
Tres, Uruguay, during three growing seasons (October–
March): 2010–2011, 2011–2012, and 2012–2013. For a full 
description, see Monteverde et al. (2018).

Genotyping
Genotyping-by-sequencing data were obtained for the 
644 advanced inbred lines and cultivars from the IRBP. 
DNA was extracted from young leaf tissue from plants 
grown at the Biotechnology Unit in Las Brujas, Canelo-
nes, Uruguay. The extraction was done with the Qiagen 
Dneasy kit (www.qiagen.com, accessed 19 Oct. 2019). The 
GBS libraries and sequencing were done at the Biotech-
nology Resource Center in the Genomic Diversity Facility 
at Cornell University in Ithaca, New York. Libraries were 
prepared according to the protocol of Elshire et al. (2011). 
Because of the strong population structure present within 
the lines, three datasets were obtained: an indica set, a 
tropical japonica set, and a combined indica and tropi-
cal japonica set. For both subspecies, indica and tropical 
japonica, SNPs were called from fastq files via the TAS-
SEL version 3.0 GBS pipeline (Bradbury et al., 2007) as 
described in Spindel et al. (2013). Alignment to the Mich-
igan State University Nipponbare rice reference genome 
version 7.0 was performed with Bowtie 2 (Langmead 
and Salzberg, 2012). Imputation of missing data for each 
of the indica (SNPI) and tropical japonica (SNPTJ) geno-
types was performed with the FILLIN algorithm imple-
mented in TASSEL version 5.0 (Bradbury et al., 2007). 
The average imputation accuracy was approximately 
94% for both the indica and tropical japonica datasets. 
Single nucleotide polymorphism markers that had more 
than 50% missing data after the imputation along with 

www.qiagen.com
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monomorphic SNPs and SNPs with a minor allele fre-
quency below 5% were removed from the datasets, as 
reported in Quero et al. (2018). The remaining missing 
data were imputed by the mean to perform principal 
component analysis. The final indica dataset contained 
92,430 markers and the tropical japonica dataset had 
44,598 markers. For the combined indica and tropical 
japonica set (SNPALL), SNPs were called from fastq files 
via the TASSEL version 3.0 GBS pipeline (Bradbury et al. 
2007); the final dataset had 15,545 markers (Fig. 2).

Phenotypic Data Analysis
The BLUEs of GY were obtained for all genotypes pres-
ent in each trial via the lme4 package (Bates and Sarkar, 
2010) in R software (R Development Core Team, 2018). 
Field analyses were conducted according to experimental 
design, which consisted of a series of smaller trials with 
randomized complete block designs connected through 
common checks. The following model, which used spa-
tial correction for rows and columns, was used to esti-
mate GY genotypic means for each environment (i.e., 
year) and subspecies (i.e., indica and tropical japonica):

( ) ( ) ( )ijklm i j k j l j m j ijklmy =m+a +l +g +h +k +e ,�[4]

where m, ai, lj, and gk(j) were defined as in Eq. [1]; h l(j) is the 
random effect associated with the lth row in the jth trial; kl(j) 
is the random effect associated with the lth column in the jth 
trial, with lj , h l(j), km(j), and eijklm as the random variables 
lj ~ N(0,sl

2), h l(j) ~ N(0,sh
2), km(j) ~ N(0,sk

2), and eijklm ~ 
N(0, se

2), all of which are independent. The GY in tropical 
japonica in 2011 was not improved by the spatial correc-
tions based on Akaike information criterion values and 
therefore we used Eq. [4] without h l(j) and km(j) for this trait. 
A final model with all the environments (i.e., years) was 
used to obtain overall genotypic means via the lm function 
in R software (R Development Core Team, 2018):

ij i j ijy =m+a +d +e ,�  [5]

where m is the overall mean, ai is the effect of the ith gen-
otype, d j is the jth environment (i.e., year), and eij is the 
residual error, eij ~ N (0, s2

e).

Overall GBLUP Model
Genotypic values were predicted via an overall GBLUP 
model following de los Campos and Pérez (2010):

1y u= m+ +e ,�  [6]

where y(N × 1) is the vector of mean yield for each geno-
type in all environments (i.e., the BLUEs from a model 
accounting for field design and environment) of length N 
(N = population size or number of genotypes in the set), 
1(N × 1) is a vector of ones of length N, m is the overall mean, 
and u(N × 1) is a random vector of genotypic predictors 
with u ~ N(0, K(N × N) s

2
g), where K is the realized addi-

tive relationship matrix estimated as the cross-product of 
the centered and standardized marker states divided by 
the number of markers and estimated with the rrBLUP 
package (Endelman, 2011) in R software (R Development 
Core Team, 2018); e is the vector of residuals with e ~ N(0, 
I(N × N) s

2
e) where I is an identity matrix of size N.

Structured GBLUP Model
We used a GBLUP approach where subgroup-specific 
marker effects were estimated. The marker effects are 
described as the sum of common effects for all groups 
and group-specific random deviation. The structured 
GBLUP model can be represented as:

0 11y u u= m+ + +e ,� [7]

where y(N × 1) is the vector of mean yield for each genotype 
in all the environments (i.e., the BLUEs from a model 
accounting for field design and environment) of length 
N (N = population size or number of genotypes in the 
set); 1(N × 1) is a vector of ones of length N; m is the overall 
mean; u0(N × 1) is a random vector of genotypic predic-
tors with u0 ~ N(0,Ks2

u0), where K(N × N) is the realized 

Fig. 2. Structure of the advanced rice inbred lines from the Instituto Nacional de Investigación Agropecuaria Rice Breeding Program and their 
genetic relationships. (A) Three datasets were used: indica with 92,430 single nucleotide polymorphisms (SNPs) and 327 advanced inbred 
lines, tropical japonica with 44,598 SNPs and 317 advanced inbred lines, and a combined indica and tropical japonica set with 15,545 
SNPs and 644 individuals. (B) The first two principal components discriminating indica (purple, n = 327) and tropical japonica (green, n = 
317) individuals in the combined data set.
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additive relationship matrix estimated as in the overall 
GBLUP model; u1(N × 1) is a random vector for the group-
specific genotypic predictors; and u1 ~ N(0, K1), where 
K1 is a block diagonal matrix, with each block being the 
realized additive relationship matrix estimated for each 
specific group with a group variance and off-diagonal 
zeros. Assuming two groups, K1 is:

1

2

2
u 1 1

2
u 2 2

1

0

0

X X

X X
K

p

æ ö¢s ÷ç ÷ç ÷ç ÷ç ¢÷s ÷çè ø
= ,� [8]

where 
1

2
us and 

2

2
us  are the genetic variance specific to Groups 

1 and 2, respectively, and p is the number of markers. In this 
model, u0 allows information to be shared between groups, 
whereas u1 captures group-specific effects. For this model, 
we used the BGLR package (de los Campos and Pérez, 2010) 
in R software (R Development Core Team, 2018).

Within-Population Optimization
Three strategies were used to optimize the TR. For each 
strategy, a GBLUP model was fitted by the rrBLUP pack-
age (Endelman, 2011) in R software (R Development 
Core Team, 2018). The predictive ability was estimated 
as the correlation between predicted and observed geno-
typic values obtained via cross-validation (Burgueño et 
al., 2012; De Leon et al., 2016). Models were compared in 
terms of their predictive ability to random samples of the 
same size and to using all the individuals in the TR.

Strategy 1: Grouping Based on Genetic Relationship
Wheat Population. A clustering algorithm with the real-
ized additive relationship matrix was used to group indi-
viduals in the IWBP TR population with the cluster package 
(Kaufman and Rousseeuw, 1990) in R software (R Develop-
ment Core Team, 2018). The Ward hierarchical agglomera-
tive method with the pseudo-F statistic was used to group 
similar individuals. The overall GBLUP model and the 
structured GBLUP model with groups as classes were used 
to predict genotypic values in the whole population.

Rice Population. The IRBP was grouped by subspe-
cies: indica or tropical japonica. Given the high level of 
allelic phasing in the rice population, several dataset 
models were compared: (i) SNPALL to predict all individu-
als, (ii) SNPALL to predict indica individuals, (iii) SNPALL 
to predict tropical japonica individuals, (iv) SNPTJ to pre-
dict tropical japonica individuals, and (v) SNPI to predict 
indica individuals. The overall GBLUP model was used 
to predict genotypic values in the rice population.

Strategy 2: Grouping Based on Trials (Wheat Only)
The wheat population was evaluated in multiple tri-
als, each having different phenotypic data quality. The 
overall GBLUP model and the structured GBLUP model 
that had field trials (EYT, AYT, and PYT) as classes were 
compared to predict genotypic values in the whole popu-
lation (Fig. 1A).

Strategy 3: Grouping Based on Maturity (Wheat Only)

The advanced inbred lines were routinely grouped into early 
or late maturity lines on the basis of their heading date. 
Different breeding objectives for GY were then pursued for 
each group: early-maturity lines (short-cycle lines) were 
selected for high yield based on a large number of grains 
per spike, whereas late-maturity lines (long-cycle lines) were 
selected for high yield based on a large number of spikes. 
Since different selection pressures have been imposed on the 
two groups, the overall GBLUP model and the structured 
GBLUP model that used maturity as classes were compared 
to predict breeding values in the whole population.

Model Validation
Predictive ability was estimated as the correlation between 
the predicted and observed genotypic values via Type 1 
cross-validation (Legarra et al., 2008; Burgeño et al., 2012; 
De Leon et al., 2016). A k-fold cross validation within TR 
was used, following Burgueño et al. (2012). Briefly, the 
observations were randomly divided into k nonoverlap-
ping subsets. Next, k –1 groups were used as training sets 
and the remaining group was used as the validation set 
(i.e., genotypic values were obtained for each individual in 
the validation set). This procedure was followed until the 
genotypic values of individuals in all k subsets had been 
predicted. One hundred replications of the cross-validation 
with k = 7 were performed and the correlation between the 
predicted genotypic values and observed genotypic means 
was used to estimate the predictive ability.

Optimization of the TR to a Specific TE
For optimization of the TR to predict a specific TE, we 
used 984 wheat lines of the EYT, AYT, PYT 2010, and 
PYT 2011 as the TR and 369 PYT 2013 lines as the TE 
(Fig. 1A). Four strategies were evaluated for the selection 
of the training population; random selection, the genetic 
relationships between the TR and the TE, or two optimi-
zation criteria: the CDmean proposed by Rincent et al. 
(2012) and PEVmean.

Strategy 4: Selection Based on the Estimated Additive 
Genetic Relationship
The optimized TR (OTR) was constructed by choosing 
individuals from the TR on the basis of their high simi-
larity to the TE. Two criteria were used to define similar-
ity for each individual: the average relationship with the 
TE ( K ) and the median relationship with the TE (K0.5). 
The predictive ability of the OTR was evaluated for select-
ing the top 15, 20, …, 100% individuals from the TR.

Strategy 5: Selection Based on the Weighted 
Estimated Additive Genetic Relationship
Similar to Strategy 4, the OTR was constructed by choos-
ing individuals from the TR on the basis of their simi-
larity to the TE, but the weighted additive relationship 
matrix (W) was used instead of the kinship matrix. The 
weighted relationship matrix is used in a similar manner 
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to the taBLUP of Zhang et al. (2010) or the sBLUP of 
Wang et al. (2018), with the difference being that we are 
using this matrix to identify the most related individu-
als, but not in the prediction model. The genetic distance 
between the TR lines and the TE lines was calculated 
as the mean marker distance weighted by the estimated 
marker effects with a modification of the variance esti-
mate of Endelman (2011):

[ , ] [ , ] 2
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where i is the ith line of the TR, j is the jth line of the TE, 
k is the kth marker, X.TR(n.TR ´ m) and   X.TE(n.TE´ m)  are the 
genotypic matrices with the marker state (–1, 1), M is the 
number of markers, and u is the vector of the estimated 
marker effects. The mixed.solve function of the rrBLUP 
package (Endelman, 2011) in R (R Development Core 
Team, 2018) was used to estimate u. Three criteria were 
used to define similarity: (i) the average relationship to 
the TE ( )W , (ii) the median relationship to the TE (W0.5), 
and (iii) a proportional stratified sampling based on the 
average relationship to the TE and the groups defined in 
Strategy 1 (WC). The predictive ability of the OTR was 
evaluated for selecting the top 15, 20, and 100% individu-
als from the TR via the GBLUP models.

Strategy 6: Selection Based on the CDmean and 
PEVmean Genetic Algorithms
The OTR was constructed by choosing individuals from 
the TR according to a genetic algorithm that maximized 
the precision of the prediction of the difference between 
the values of each nonphenotyped individual (TE) and 
the mean of the population of candidate individuals 
(TR). We used the CDmean, defined as the squared cor-
relation between the true and the predicted contrast of 
genetic values, and the PEVmean, defined as the vari-
ance of the distance between the true and the predicted 

contrast of genetic values, as optimization criteria. The 
optimization algorithm code was adapted from code 
provided by R. Rincent (pers. comm., 29 May 2017) and 
was implemented in R (R Development Core Team, 
2018). The code is available as Supplemental File S1. For 
each sample size and each criterion, 50 repetitions of the 
algorithm with 800 iterations were used. The predictive 
ability of the OTR was evaluated for selecting the top 15, 
20, and 100% individuals from the TR.

Random Selection
Finally, a random selection of TR lines was used to pre-
dict the TE by taking subgroups of different sizes. For 
subgroups with 15, 20, and 100% of the lines, GBLUP 
models were trained and used to predict the TE.

RESULTS

Within-Population TR Optimization

Wheat Population
The predictive ability increased with the number of 
individuals used in the TR (Fig. 3); however, after 600 
individuals, the increase in predictive ability became 
marginal. Some groups had higher predictive ability than 
those obtained with either a random sample of the same 
size or the entire TR (Fig. 3). Group 1 obtained from 
the cluster analysis was better predicted than the other 
cluster groups, AYT was better predicted than the other 
trials groups, and the short-cycle lines were better than 
the long-cycle lines. The highly predictive groups had 
high within-population structure (Fig. 4) that was not 
associated with yield (data not shown). The model that 
includes the structure of the trials or cycle groupings 
showed higher predictive ability than random samples of 
the same size (Fig. 3).

Fig. 3. Predictive ability of three clustering strategies [genetic groups based on the realized additive relationship matrix: Group to Group 5 (C1–
C5); field trials: elite yield trials (yet), advanced yield trials (AYT), preliminary yield trials from 2010 (PYT10), and preliminary yield trials from 
2011 (PYT11); and maturity: short-cycle lines (SC) and long-cycle lines (LC)], and the structured mixed model best linear unbiased prediction 
(GBLUP) model used for the within-population optimization for the wheat dataset.
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Rice Population
Using both indica and tropical japonica subspecies as 
the TR population to predict all individuals resulted in a 
high predictive ability (r = 0.8, Fig. 5A). Group member-
ship (i.e., indica or tropical japonica) was highly predict-
able but within-group predictions were low (Fig. 5B). 
Furthermore, when individuals from both subspecies 
were used to predict either indica (r = 0.53) or tropical 
japonica (r = 0.37), the predictive ability was low. Finally, 
when using only a subspecies to predict its own perfor-
mance, the predictive ability of both indica (r = 0.69) and 
tropical japonica (r = 0.54, Fig. 5A) increased. There was 
a strong population structure among rice subspecies that 
was highly associated with GY (Fig. 5C).

Optimization of the TR to a Specific TE
The best OTR strategy was to use the average of the 
weighted additive relationship matrix with a stratified 
sampling accounting for genetic cluster (WC, Fig. 6). The K 
mean and K median were the worst optimization criteria 
(Fig.6). The CDmean and PEVmean stragtegies were no bet-
ter than random selection but were better than K (Fig. 6).

DISCUSSION
Our study was able to first characterize the structure 
of small, highly predictive training sets to design an 
optimization strategy for identifying training sets for 
forward prediction of specific testing sets. We propose 
the use of a weighted relationship matrix in combination 
with stratified sampling to optimize the TR. This strat-
egy is superior to random samples of the same size, the 
use of all available individuals, and other optimization 
strategies proposed in the literature. We discuss our find-
ings in the context of population sizes, the diversity and 
structure of the TR, and relationship between the TR and 

the TE and propose conditions (i.e., traits and popula-
tions) where we believe our strategy would be superior.

Size of the TR
We found an increase in predictive ability with larger 
population sizes up to 600 individuals, which is similar 
to other studies (Lorenzana and Bernardo, 2009, Asoro 
et al., 2011). It has been widely established that predictive 
ability is higher when larger TRs are used (Muir, 2007; 
Meuwissen, 2009; Asoro et al., 2011; Lorenz, 2013; Isidro 
et al., 2015; Edwards et al., 2019); however, the relation-
ship between TR size and other factors such as genetic 
relationship and population structure is less understood. 
We were able to identify smaller groups of individuals 
with high predictive ability (i.e., Group 1, AYT, short-
cycle lines, and the WC optimization strategy). These 
groups made better predictions than random samples 
of the same size and better predictions than all available 
individuals in the population. Therefore, there is a trade-
off between population size and other factors that should 
be considered when optimizing the TR.

Diversity and Population Structure of the TR
There are a few processes that are relevant to how diver-
sity affects the predictive ability of a TR. Diversity is a 
necessary condition for marker effect estimations (Nor-
man et al., 2018) but how diversity is structured in the 
population is also relevant (Isidro et al., 2015). The genetic 
relationships among individuals are required for accu-
rate genomic predictions (Habier et al, 2007; Asoro et 
al., 2011; Clark et al., 2012; Isidro et al., 2015; Edwards 
et al., 2019) because a relationship matrix is used to bor-
row information from relatives for prediction. Therefore, 
unrelated individuals can only be predicted by the mean 
performance of the population in a GBLUP context. 

Fig. 4. Within-group population structure for the highly predictive groups: (A) Group 1, (B) advanced yield trials (AYT), and (C) short-cycle lines 
for the wheat dataset represented by heatmaps of the realized additive relationship matrix, with the parental contribution given below (i.e., 
each color represents a different parent).
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In a broader interpretation, marker effects are genetic-
background-dependent (Asoro et al., 2011; Toosi et al., 
2010). Different levels of genetic relationship such as those 
created by family relationships can also create population 
structure (Würschum et al., 2017; Schmidt et al., 2016). 
The level of population structure determines the optimal 
prediction strategy (Isidro et al., 2015) and different strat-
egies have been proposed to deal with population struc-
ture such as prediction within families (Würschum et al., 
2017) or groups (Norman et al., 2018), prediction of group 
performance [i.e., compressed BLUP, (Wang et al., 2018)] 
or prediction of group performance and within-group 
deviation [structured GBLUP (de los Campos and Pérez, 
2010)]. We evaluated these processes in two species with 
different levels of population structure and then proposed 
a new strategy for dealing with population structure that 
is more effective for forward prediction.

We found strong population structure in opposite 
phases in rice that was associated with the phenotype. This 
population structure overestimated the overall prediction 
accuracy (i.e., r = 0.85) by being accurate in predicting 
group membership and performance but being a poor 
predictor of within-group performance (i.e., r < 0.5). We 
show the effect of strong population structure on overall, 
group, and within-group predictions in a constructed 
example (Fig. 7). When population structure is associated 
with the phenotypic trait of interest, the model might be 
accurate at predicting group membership and group per-
formance but extremely poor at predicting within-group 
performance. Group performance is relevant for predict-
ing traits with low heritability that are hard to predict in 
general and where individuals within a group may act as 

pseudo-replications of family or groups, improving overall 
prediction accuracy (Wang et al., 2018). When the groups 
are families, average family performance can be easily 
predicted as the average performance of both parents 
and is therefore less relevant (Würschum et al., 2017). For 
example, in a broader case, identifying indica and tropi-
cal japonica individuals and predicting all individuals in 
each subspecies as the mean performance of their group 
had no practical relevance. Because population structure 
can create a challenge for predictions when markers are in 
opposite phases among subpopulations (Toosi et al., 2010; 
Asoro et al., 2011; Lopez-Cruz et al., 2015), within-family 
or within-group prediction might be more effective. Over-
estimation of the predictive accuracy was also observed 
by Schmidt et al. (2016), who combined spring and winter 
barley (Hordeum vulgare L.). Therefore, overall predictions 
with a strong population structure that is associated with 
the phenotype are challenging.

On the other hand, all the small groups that were 
highly predictive in our study (i.e., Group 1, AYT, and short-
cycle lines) shared a low level of within-group population 
structure that was created by family relationships and was 
not associated with the phenotype. The presence of low 
levels of population structure that is not associated to the 
phenotype creates optimal prediction conditions (Fig. 7), 
where enough diversity is present to estimate marker effects 
and there is a high likelihood of each individual in the TE 
having a relative represented in the TR. Overall predictions 
in these cases can benefit from larger population sizes.

Furthermore, structured GBLUP models outper-
formed overall predictions in most of our situations 
by including a group effect as well as within-group 

Fig. 5. (A) Predictive ability of different rice training population (TR) datasets to predict specific testing population (TE) datasets: ALL = all individuals; I = 
indica individuals; TJ = tropical japonica individuals. (B) One realization of a scatterplot of observed vs. predicted values for the dataset that used ALL 
individuals to predict ALL. (C) Heatmap of the realized additive relationship matrix of the rice population. (D) Box-plot of grain yield by rice subspecies.



10 of 14	 the plant genome  vol. 12, no. 3  november 2019

deviations. Marker-independent groups are more effec-
tive than groups based on marker-only information, 
probably because these groups provide redundant infor-
mation that is already accessible from the relationship 
matrix. Other studies have shown that considering popu-
lation structure improves prediction ability (Isidro et al., 
2015; Rincent et al., 2017; Norman et al., 2018); therefore, 
population structure should play a key role in the strate-
gies used to build OTRs for genomic selection (Asoro 
et al., 2011; Crossa et al., 2014; Isidro et al., 2015, Lorenz 
and Nice, 2017; Rincent et al., 2017).

The Relationship between TR and TE
One of the main factors driving the trade-offs among 
population size, diversity, and population structure is the 
relationship between the TR and the TE (Habier et al., 

2007, 2013; Crossa et al., 2010, 2014; Lorenz et al., 2012; 
Pszczola et al., 2012). Training sets that are more related 
to the testing sets have higher predictive ability (Crossa 
et al., 2014; Lorenz and Smith, 2015; Riedelsheimer et 
al., 2013). Furthermore, Isidro et al. (2015) concluded 
that an optimal design for the TR should minimize the 
relationships among the genotypes in the TR (i.e., the 
high diversity within the TR) while maximizing the rela-
tionship between the TE and the TR. Several methods 
have been proposed to optimize the TR in this context 
(Rincent et al., 2012, 2017; Isidro et al., 2015) with trait- 
and population-structure-dependent results. We used 
both a within-TR cross-validation and an independent 
forward TE approach to evaluate these effects and found 
that genetic relationship between TR and TE is one of 
the most relevant properties of the TR for increasing 

Fig. 6. Optimization of the training population (TR) through three overall strategies. (A) Strategy based on the average (K ) or median (K0,5) real-
ized genetic relationship of TR individuals to the testing population (TE). (B) Strategy based on the average (W ) or median (W0,5) weighted 
genetic relationship of TR individuals to the TE or the average W with a stratified sampling considering genetic cluster (WC, and C) on the basis of 
the the average coefficient of determination (CDmean) and average prediction error variance (PEVmean) optimization criteria. All optimized TRs are 
compared with random samples of the same size (the mean performance of 100 random samples is in black and the range is shaded).
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predictive ability. We proposed an optimization strategy 
that outperformed previous methods. The best optimiza-
tion strategy was the weighted relationship matrix with 
stratified sampling. The CDmean and PEVmean methods 
outperformed the relationship matrix (K) method, as in 
Rincent et al. (2012). However, the weighted relationship 
matrix with stratified sampling was superior to CDmean 
and PEVmean. Both CDmean and PEVmean have shown 
limited success when population structure is present 
(Isidro et al., 2015). We believe that proper modeling of 
the population structure is one of the main reasons for 
the success of our strategy. Estimations of the predictive 
ability of the CDmean strategy can be biased in the opti-
mization phase if the search space is not large enough in 
terms of the number of starting points and iterations. We 
believe that our CDmean estimations are appropriate, 
the number of iterations used were based on achieving 
a plateau in the predictive ability for each population 
size, and the number of starting points was increased 
until consistent estimations of the predictive ability were 
found for each population size (Supplemental Fig. S1).

The region of the genome where individuals are more 
similar is more relevant than being similar across the 
genome. We found that a weighted genetic relationship 
matrix (W) outperformed the genetic relationship matrix 
(K). This shows that the kinship matrix per se is not a good 
indicator of groups of individuals with different marker 
effect responses for relevant phenotypic traits. Zhang et 
al. (2010) proposed and explored the idea of a weighted 
relationship matrix but in a different context. They found 
that the use of a trait-specific marker information matrix 
(taBLUP) for predictions improved the predictive ability 
over the GBLUP model. We used the same general idea 
of the taBLUP but with a few modifications. Genome-
wide estimations of marker effects were used instead of 
grouping markers through previous identification of the 
relevant markers by genome-wide association studies. 
Furthermore, instead of using the weighted matrix for the 
prediction model, we used it in the sampling strategy of 
the TR to decide which individuals are the most related to 
the TE (i.e., W strategy). This OTR has higher predictive 
ability than random samples of the same size and higher 

Fig. 7. Example constructed to show the consequences of overestimation when the phenotypic trait is associated with population structure, showing 
the case where population structure is associated with the phenotype (left panels) and a case where population structure is not associated with 
the phenotype (right panels). Boxplots for phenotypic values for a hypothetical trait are shown in the upper panels and the correlations between 
predicted and observed values are shown in the lower panels. Overall predictions might be high when population structure is associated with the 
phenotypic traits as the result of an artifact of mean performance for each group. This model will excel at predicting group membership and group 
performance (i.e., which population every individual belongs to and what that group’s overall performance is) but might be a very poor predictor 
of within-group performance (i.e., which individual within that group or family will be superior). On the other hand, when population structure is not 
associated with the phenotype, overall predictions will reflect within-group predictions, with the advantage that larger populations are used.
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predictive ability than including all available individuals 
from the TR. This strategy is probably better suited for 
complex quantitative traits because it uses a genome-wide 
approach for marker effect estimation (Zhang et al., 2010). 
Other strategies for weighting the relationship matrix, such 
as taBLUP and sBLUP will be more effective for oligogenic 
traits (Wang et al., 2018). Furthermore, because bin-opti-
mized quantitative trait nucleotides from genome-wide 
association studies are optimized to account for linkage 
disequilibrium structures in sBLUP, sBLUP will perform 
better than taBLUP (Wang et al., 2018). The W TR opti-
mization strategy that we proposed could be used with the 
sBLUP weighted matrix instead of the genomic-weighted 
matrix to predict oligogenic traits in future studies.

The best optimization strategy in our study included 
a weighted matrix to evaluate relationship among indi-
viduals, along with stratified sampling (WC). We used 
the general ideas of the compressed BLUP (Wang et 
al., 2018) and structured GBLUP (de los Campos and 
Pérez, 2010) approaches but modified them to optimize 
the TRs. Instead of using the clusters to predict group 
performance, as in the compressed BLUP (Wang et al., 
2018), or group and within-group performance, as in the 
structured GBLUP (de los Campos and Pérez, 2010), we 
used a clustering strategy to obtain a stratified sample of 
the TR that was more similar to Isidro et al (2015). The 
stratified sampling approach is superior to sampling the 
most related individuals overall because it produces a 
better representation of all the linkage disequilibrium 
structures in the TR that are relevant for the TE. How-
ever, when the TR and TE are conceptually the same as 
in x-fold validations or replaced phenotyping strategies, 
the WC method performs similar to the PEVmean and 
CDmean methods. We showed the effect of different 
sampling strategies for forward and x-fold validation 
strategies (Supplemental Fig. S2). When the TE is con-
ceptually different from the TR or has a lower level of 
relationship with the TR (i.e., similar to when forward 
predictions are used in GS to predict future popula-
tions), the WC is the best strategy (Supplemental Fig. 
S2A). However, when an x-fold validation is used, such 
as in replaced phenotyping strategies, the WC strategy 
has no advantage over the other methods (Supplemental 
Fig. 2B). Stratified sampling with the weighted relation-
ship matrix (WC) is therefore especially relevant when 
forward predictions are attempted with future TEs, as in 
our case. In our study, we optimized the TR for a forward 
prediction three generations apart (i.e., a future PYT). 
This strategy was able to capture the relevant genomic 
regions and better estimate the marker effects increasing 
predictive ability. Therefore, smaller, OTR can be used to 
improve predictive ability. This indicates that neither the 
general relationship nor the population size per se are the 
best indicators of predictive ability. Optimized popula-
tions perform better than random samples of the popula-
tion of the same size but are more relevant and they have 
higher predictive ability than the use of all individuals 
available from the TR.

CONCLUSIONS
In summary, we proposed a new strategy to optimize 
TRs to predict specific TEs in a forward approach. Our 
strategy of using a weighted relationship matrix in com-
bination with a stratified sampling approach was the best 
approach for optimizing the TR. This strategy performed 
better than a random sample of the population of equal 
size, use of all the individuals available in the train-
ing population, or use of the relationship matrix, the 
CDmean, or PEVmean to choose the individuals to make 
up the TR. This strategy will be superior for complex 
quantitative traits and when small levels of population 
structure are present, such as with the familial relation-
ship structures common in plant breeding populations. 
For oligogenic traits, a similar sampling strategy could 
be implemented but with the sBLUP weighted matrix 
instead of genome-wide marker effects. Our strategy 
will perform similar to the CDmean or PEVmean when 
population structure is absent or if the TE has conceptu-
ally the same structure as the TRs.

Supplemental Information
Supplemental File S1. The optimization algorithm code 
used for the CDmean and PEVmean optimization. This 
code was adapted from a code provided by R. Rincent 
(pers. comm., 29 May 2017) and was implemented in R 
(R Development Core Team, 2018). 

Supplemental Fig. S1. (A) Coefficients of determina-
tion in each iteration and by training population size. (B) 
Predicted ability for CDmean, PEVmean, and random 
selection for each training population size.

Supplemental Fig. S2. Optimization of the training 
population using two overall strategies for two partitions 
of the TR: (i) predicting the least related individuals and 
(ii) predicting individuals from the same conceptual 
population as in an x-fold validation or replaced pheno-
typing. (A) Principal component of the TR, highlighting 
the partition strategies. (B) Predictions based on the 
average ( K ) or median (K0.5) realized genetic relation-
ship of TR individuals to the TE. (C) Predictions based 
on the average (W  or median (W0.5) weighted genetic 
relationship of TR individuals to the TE, or the average 
W with a stratified sampling considering genetic cluster 
(WC). All OTRs are compared with random samples of 
the same size (the mean performance of 100 random 
samples is in black and the range is shaded).
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