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ABSTRACT The effectiveness of genomic selection in breeding
programs depends on the phenotypic quality and depth, the
prediction model, the number and type of molecular markers,
and the size and composition of the training population (TR).
Furthermore, population structure and diversity have a key role

in the composition of the optimal fraining sets. Our goal was

fo compare strategies for optimizing the TR for specific testing
populations (TE). A total of 1353 wheat (Triticum aestivum L.) and
644 rice (Oryza sativa L) advanced lines were evaluated for
grain yield in multiple environments. Several within-TR optimization
strategies were compared to identify groups of individuals with
increased predictive ability. Additionally, optimization strategies
to choose individuals from the TR with higher predictive ability for
a specific TE were compared. There is a benefit in considering
both the population structure and the relationship between

the TR and the TE when designing an optimal TR for genomic
selection. A weighted relationship matrix with stratified sampling
is the best strategy for forward predictions of quantitative traifs in
populations several generations apart.

Abbreviations: AYT, advanced yield frial; BLUE, best linear unbiased

estimate; CDmean, average coefficient of determination; EYT, elite yield frial;
GBLUP, mixed model best linear unbiased prediction; GBS, genotyping-by-
sequencing; GS, genomic selection; GY, grain yield; INIA, Instituto Nacional de
Investigacion Agropecuaria (National Agricultural Research Insitute); IRBP, INIA
rice breeding program; IWBP, INIA wheat breeding program; OTR, optimized
fraining population; PEVmean, prediction error variance; PYT, preliminary

yield trial; sBLUP. super best linear unbiased prediction; SNP, single nucleotide
polymorphism; taBLUP, trait-specific relationship matrix best linear unbiased
prediction; TE, testing population; TR, training population; W, weighted additive
relationship matrix with a strafified sampling accounting for genetic cluster.

CORE IDEAS

o  Training populations can be optimized for specific
testing populations.

o Optimized training populations are smaller, more
related, and more predictive.

o  Stratified sampling with a relationship matrix
weighted by marker effect is optimal.

GENOMIC SELECTION (GS) consists of selecting individ-
uals from a TE on the basis of genotypic values pre-
dicted from their genome-wide molecular marker scores
and a statistical model adjusted with individuals that have
phenotypic and genotypic information (Meuwissen et al.,
2001). The group of individuals that were phenotyped and
genotyped is called the TR (Heftner et al. 2009).

Genomic selection is preferred over marker-assisted
selection approaches for complex traits (Habier et al.,
2007; Lorenz et al., 2011) because it includes all molecular
markers in the prediction model and because it considers
the quantitative trait loci of both major and minor effects
(Xu, 2003; Jannink et al., 2010; Poland and Rife, 2012;
Smith et al., 2018). Simulated and empirical cross-valida-
tion studies in plants show that GS can accelerate prog-
ress in plant breeding compared with marker-assisted
selection, resulting in higher genetic gains (Hayes et al.,
2009; Crossa et al., 2010; Hefner et al., 2011), higher
profit per unit of cost, and superior progenies (Bernardo
and Yu, 2007; Heffner et al., 2009, 2011; Heslot et al.,
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2012; Poland and Rife, 2012; Lado et al., 2017). Genomic
selection is also useful when phenotypic information is
not available, is not reliable because of low heritability, is
costly or labor-intensive (Lado et al., 2018), or when there
is a strong genotype x environment interaction with the
target environment.

The most widely used methods of estimating the
genotypic values are ridge regression, which estimates
marker effects by regressing the trait values on marker
genotypes, and the mixed model best linear unbiased
prediction (GBLUP), which uses the genomic-estimated
relationship matrix to model the correlation among indi-
viduals (VanRaden, 2008). The genotypic values from
ridge regression and GBLUP are equivalent (Habier et al.,
2009; de los Campos et al., 2012).

The main factors affecting the predictive abilities
of GS models are the number and quality of phenotypic
observations of the TR (HefIner et al. 2009; Jannink et al.
2010; Cooper et al., 2014; Lado et al., 2018), the genome
coverage of molecular markers in both the TR and the
TE (Solberg et al., 2008; Poland and Rife, 2012), the size
and composition of the TR (Jannink et al., 2010; Hef-
fner et al., 2011; Wientjes et al., 2013), and the relation-
ship between the TR and the TE (Pszczola et al., 2012;
Wientjes et al., 2013; Crossa et al., 2014; Hickey et al.,
2015). The amount of phenotypic information used in GS
has increased over recent years with the development of
high-throughput phenotyping methods and the integra-
tion of phenotypic information from different breeding
programs in the same geographical region. However,
obtaining more phenotypic information of better qual-
ity remains a challenge for improving the selection of
superior individuals (Araus and Cairns, 2014; Cooper
et al,, 2014). Studies have shown that the higher the
heritability, the higher the prediction accuracy (Combs
and Bernardo, 2013; Isidro et al., 2015). In addition, the
more complex the trait, the poorer the prediction accu-
racy regardless of the heritability (Combs and Bernardo,
2013). The number and genome-wide coverage of molec-
ular markers affect the prediction accuracy, with more
molecular markers providing higher predictive ability
until a plateau is reached that depends on the population
size, structure, and diversity (Lorenzana and Bernardo,
2009; Gorjanc et al., 2017). More molecular markers are
generally needed to maintain the prediction accuracy
over cycles of selection through a better representation
of the linkage disequilibrium structure (Asoro et al.,
2011; Habier et al., 2007; Heffner et al. 2011; Lorenzana
and Bernardo, 2009; Norman et al., 2018). Additionally, a
large number of molecular markers is required to capture
the effect of all quantitative trait loci when the TR used is
genetically diverse (Norman et al., 2018).

The diversity of the TR affects the accuracy of the
predictions in many ways. Several studies have shown that
the larger the TR, the higher the predictive ability (Habier
etal.,, 2007; Hayes et al., 2009; Lorenzana and Bernardo,
2009; Asoro et al., 2011; Crossa et al., 2014). Furthermore,
low prediction accuracies are obtained when the TR

has narrow genetic diversity because it is not possible to
accurately estimate all the genotypic effects that explain
the variation in the phenotype (Norman et al., 2018).
On the other hand, increasing the diversity of the TR by
using individuals that are genetically distant from the TE
decreases the prediction accuracy (Crossa et al., 2014).
Therefore, one of the most challenging aspects of
effective GS is the design of an optimal TR. After a good
marker system and high-quality phenotyping have been
established, choosing an optimal TR is not trivial. On the
one hand, increasing the TR population size increases
the prediction accuracy (Lorenzana and Bernardo, 2009;
Asoro et al., 2011). However, because GS models rely on
linkage disequilibrium, some studies have found that
smaller, more related populations might be optimal
(Crossa et al., 2010), whereas other studies have argued
that increasing the population size, even at the expense of
genetic relatedness, might be optimal (Asoro et al., 2011)
for predicting a new population (i.e. the TE). On the other
hand, genetic diversity within the TR is fundamental for
estimating marker effects appropriately (Norman et al.,
2018). Finally, the region in the genome where individuals
are more similar also affects genomic predictions, espe-
cially for oligogenic traits (Zhang et al., 2010; Wang et al.,
2018). Some strategies have been designed to weight genetic
relationship matrices on the basis of their marker effects
regardless of their position or linkage disequilibrium
[trait-specific relationship matrix best linear unbiased
prediction (taBLUP)] (Zhang et al., 2010), or weighting
only bin-selected quantitative trait nucleotides [super best
linear unbiased prediction (sSBLUP)] (Wang et al., 2014).
Several attempts have been made to optimize the TR for a
given TE based on maximizing the accuracy of the predic-
tion. Rincent et al. (2012) proposed an iterative process of
exchanging individuals to maximize a function derived
from the generalized average coeflicient of determination
(CDmean), defined as the squared correlation between the
true and the predicted contrast of genetic values (Laloé,
1993) that maximized prediction accuracy between the
TR and a TE, and the use of the prediction error variance
(PEVmean). Isidro et al. (2015) used these criteria and
three different TR optimization methods based on strati-
fied sampling and showed that population structure has
a large effect on optimizing the TR and the best methods
depend on it. When the population structure effect was
small, the CDmean performed adequately. However, with a
strong population structure, the best strategy for optimiz-
ing the TR was a stratified sampling based on the popu-
lation structure (Isidro et al., 2015; Rincent et al., 2017).
Because these methods rely on GBLUP theory, they work
well with highly polygenic traits but low accuracy would be
found in oligogenic traits determined by a few large-effect
quantitative trait loci (Rincent et al., 2017; Wang et al.,
2018). A method that would be superior across populations
and traits could not be found (Rincent et al., 2012; Isidro et
al,, 2015). In summary, the composition of the TR should
have a balance between the within-population genetic
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Training Population (TR)

Testing Population (TE)

Fig. 1. Structure of the advanced wheat inbred lines from the Instituto Nacional de Investigacion Agropecuaria Wheat Breeding Program
and their genetic relationships. [A) The composition of the training population (TR] and the testing population (TE|, with elite yield trials (EYT),
advanced yield frials [AYT) and preliminary (PYT) yield frials from 2010 and 2011 comprising the TR. The PYT from 2013 was the forward TE.
(B) Dendrogram of the training population constructed with the additive relationship matrix (K) where five groups were identified.

diversity, the relatedness with the TE, and the regions of
the genome where individuals are more similar.

The goal of this study was to compare strategies for
optimizing the TR for genomic prediction models in a rice
and a wheat breeding program. First, we evaluated how the
size, genetic relationships among individuals, and popula-
tion structure affect the prediction ability within the TR.
Second, we proposed some strategies for optimizing the
TR based on different methods that account for the genetic
relationship between the TR and the TE and we compared
these to other methods proposed in the literature.

MATERIALS AND METHODS
Wheat Population

Plant Material

A total of 1353 spring bread wheat advanced inbred

lines from the Wheat Breeding Program of the Instituto
Nacional de Investigacion Agropecuaria (INIA, National
Agricultural Research Institute) of Uruguay (IWBP)
were used. The IWBP lines consisted of all the advanced

inbred lines from the preliminary yield trials (PYT)
from 2010, 2011, and 2013, as well as the lines from the
advanced yield trials (AYT) and elite yield trials (EYT)
from 2010 (Fig. 1).

Phenotyping

Grain yield (GY) evaluations were conducted in five
locations in Uruguay from 2010 to 2014, including one
location with four sowing dates. Locations used to evalu-
ate the genotypes were Dolores (33°50’S, 58°14’W; 15 m
a.s.l.), Durazno (33°33’S, 56°31’W; 91 m a.s.l.), La Estan-
zuela (34°20'S, 57°42'W; 81 m a.s.l.), Young (32°76'S,
57°57'W; 85 m a.s.l.), and Ruta2 (33°45’S, 57°90'W; 95 m
a.s.l.). For a full description of the number of lines evalu-
ated in each location and years, see Lado et al. (2016).

Genotyping

Genotyping-by-sequencing (GBS) data were obtained

for all 1353 TWBP lines. Tissue was collected from plants
grown in either the field or the greenhouse. The cetyl tri-
methylammonium bromide method (Saghai-Maroof et al.,
1984) was used to isolate DNA for the GBS protocol as in
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Poland and Rife (2012). The TASSEL-GBS pipeline (Glau-
bitz et al., 2014) was run with a modification for nonrefer-
ence genomes (Poland and Rife, 2012). Briefly, markers
with a minor allele frequency below 1% or with more than
80% missing data were discarded. Marker—data imputa-
tion was conducted via the realized relationship matrix
through the multivariate normal expectation maximiza-
tion method of the rrBLUP package (Endelman, 2011) in R
software (R Development Core Team, 2018). We identified
81,999 single nucleotide polymorphisms (SNPs).

Phenotypic Data Analysis

Best linear unbiased estimates (BLUEs) of GY were
obtained for all genotypes present in each trial by the
nlme package (Pinheiro et al., 2007) in R software (R
Development Core Team, 2018). Field analysis was con-
ducted according to the experimental design. Since the
PYT consisted of a series of smaller alpha-design trials
grouped by heading date and connected through com-
mon checks, the following model [Eq. 1] was used to
estimate genotypic means for each heading date group in
each environment (i.e. combination of location and year):

Yim =Wt + >\j TNy T Bl(kj) + &> (1]

where 1 is the overall mean, o is the effect of the i" gen-
otype, X, is the effect of the j trial, wj s the effect of the
k™ replication within the j* trial, 3, 1s the effect of the
I'™ incomplete block within the k™ replication and the jth
trial, and €, is the residual error from the ih genotype in
the I'" block within the k™ replication in the j® trial, with
)\j, §] Gk and ¢, as the random variables \. ~ N(0,0,2),
Bl(jk) ~N(0,0,%), and e, ~ N(O, 0 %), all of which are inde-
pendent. The AYT and EYT consisted of alpha-designs
grouped by heading date; therefore, the following model
[Eq. 2] was used to estimate genotypic means for each
heading date group in each environment (i.e., combina-
tion of location and year):

)’ijk:l*+0‘f+'\{j+6k(j)+€ijk’ (2]

where i, o, Vp §] Ky and €5, Were defined as in Eq [1],
with 3, ) and £, a8 the random variables 3 i)~ N(O,oﬁz)
and €4k~ N(0, 6 ), both of which are independent.

To decrease the genotype x environment interactions,
Mega-Environments 1 and 2, as identified in Lado et al.
(2016) were used for this study. We did not use Mega-
Environment 3 because a large genotype x environment
interaction exists between Mega-Environment 3 and
Mega-Environments 1 and 2. The mega-environments
were constructed as groups of environments with low
within genotype x environment interaction and high
among genotype X environment interaction. Mega-Envi-
ronments 1 and 2 include all locations from 2010, 2011,
and 2013 and one of the La Estanzuela environments from
2014. They have a high correlation between environments.
The final model used to obtain genotypic means across
environments was:

)’i;k:u"‘@i"'éj‘i‘”fk(;)"'qu, (3]

where 1, o, and Vi Were defined as in Eq. [1]; 6j is the
j environment (i.e., location and year) within a mega-
environments, with ~, j, and €, being the random vari-
ables Vi)~ N(0,0% )and ¢, ~ f\](O, o %), both of which
are independent. The BLUEs were estimated for each
genotype by the nlme package (Pinheiro et al., 2007) in R

software (R Development Core Team, 2018).

Rice Population

Plant Material

A total of 644 lines from the INIA Rice Breeding Program
of Uruguay (IRBP) were used. The population consisted of
325 lines from the O. sativa ssp. indica, 314 lines from O.
sativa ssp. japonica (tropical japonica), two indica cultivars
[El Paso 144 (Yan et al., 2007) and INIA Olimar (Blanco
et al., 1993; Instituto Nacional de Semillas, 2017) that are
the most widely grown indica cultivars in Uruguay, and
three tropical japonica cultivars [INIA Parao (Molina et
al., 2011), INTA Tacuari (Blanco et al.,1993), and INTA
Caraguatd (Blanco et al., 1993)]. All cultivars were used as
checks in all phenotyping experiments.

Phenotyping

Rice lines were evaluated for GY in the Experimental
Unit of Paso de la Laguna (33°16S, 54°10'W), Treinta y
Tres, Uruguay, during three growing seasons (October—
March): 2010-2011, 2011-2012, and 2012-2013. For a full
description, see Monteverde et al. (2018).

Genotyping

Genotyping-by-sequencing data were obtained for the
644 advanced inbred lines and cultivars from the IRBP.
DNA was extracted from young leaf tissue from plants
grown at the Biotechnology Unit in Las Brujas, Canelo-
nes, Uruguay. The extraction was done with the Qiagen
Dneasy kit (www.qiagen.com, accessed 19 Oct. 2019). The
GBS libraries and sequencing were done at the Biotech-
nology Resource Center in the Genomic Diversity Facility
at Cornell University in Ithaca, New York. Libraries were
prepared according to the protocol of Elshire et al. (2011).
Because of the strong population structure present within
the lines, three datasets were obtained: an indica set, a
tropical japonica set, and a combined indica and tropi-
cal japonica set. For both subspecies, indica and tropical
japonica, SNPs were called from fastq files via the TAS-
SEL version 3.0 GBS pipeline (Bradbury et al., 2007) as
described in Spindel et al. (2013). Alignment to the Mich-
igan State University Nipponbare rice reference genome
version 7.0 was performed with Bowtie 2 (Langmead

and Salzberg, 2012). Imputation of missing data for each
of the indica (SNP)) and tropical japonica (SNP,) geno-
types was performed with the FILLIN algorithm imple-
mented in TASSEL version 5.0 (Bradbury et al., 2007).
The average imputation accuracy was approximately

94% for both the indica and tropical japonica datasets.
Single nucleotide polymorphism markers that had more
than 50% missing data after the imputation along with
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Fig. 2. Structure of the advanced rice inbred lines from the Instituto Nacional de Investigacién Agropecuaria Rice Breeding Program and their
genetic relationships. [A) Three datasefs were used: indica with 92,430 single nucleotide polymorphisms (SNPs| and 327 advanced inbred
lines, fropical japonica with 44,598 SNPs and 317 advanced inbred lines, and a combined indica and tropical japonica set with 15,545
SNPs and 644 individuals. (B) The first two principal components discriminating indica (purple, n = 327) and tropical japonica (green, n =

317) individuals in the combined data set.

monomorphic SNPs and SNPs with a minor allele fre-
quency below 5% were removed from the datasets, as
reported in Quero et al. (2018). The remaining missing
data were imputed by the mean to perform principal
component analysis. The final indica dataset contained
92,430 markers and the tropical japonica dataset had
44,598 markers. For the combined indica and tropical
japonica set (SNP, ), SNPs were called from fastq files
via the TASSEL version 3.0 GBS pipeline (Bradbury et al.
2007); the final dataset had 15,545 markers (Fig. 2).

Phenotypic Data Analysis

The BLUEs of GY were obtained for all genotypes pres-
ent in each trial via the Ime4 package (Bates and Sarkar,
2010) in R software (R Development Core Team, 2018).
Field analyses were conducted according to experimental
design, which consisted of a series of smaller trials with
randomized complete block designs connected through
common checks. The following model, which used spa-
tial correction for rows and columns, was used to esti-
mate GY genotypic means for each environment (i.e.,
year) and subspecies (i.e., indica and tropical japonica):

(4]

where i, o, >\ and ~ Ky Were defined as in Eq [1] My I8 the
random effect associated with the I*" row in the jt j trlal K,
is the random effect associated with the ' column in the ]‘i1
trial, with >\ s Mgy By and € jkim A the random variables
X, ~N(0,0, )nl ( ,0 )Rm)~N(00 )andelklm
0,0, all of Wthh are 1ndependent The GY in tropzcal
]apomca in 2011 was not improved by the spatial correc-
tions based on Akaike information criterion values and
therefore we used Eq. [4] without i) andk for this trait.
A final model with all the environments (i.e., years) was
used to obtain overall genotypic means via the Im function
in R software (R Development Core Team, 2018):

y,.jk,m:u-l—(x.—kx-i-wk(j + M) TR TE

ijklm >

Yy =hto,+8 +¢, (5]

where u is the overall mean, «. is the effect of the i* gen-
otype, b, is the jth environment (i.e., year), and e is the
residual error, €. N (0, 0%).

Overall GBLUP Model

Genotypic values were predicted via an overall GBLUP
model following de los Campos and Pérez (2010):

y=lp+u+e, (6]

where y,, is the vector of mean yield for each geno-
type in all environments (i.e., the BLUEs from a model
accounting for field design and environment) of length N
(N = population size or number of genotypes in the set),
1y, 1) is a vector of ones of length N, p is the overall mean,
and u , , isa random vector of genotypic predictors
with u N(O Ky N) o? ) where K is the realized addi-
tive relationship matrix “estimated as the cross- product of
the centered and standardized marker states divided by
the number of markers and estimated with the r#*BLUP
package (Endelman, 2011) in R software (R Development
Core Team, 2018); € is the vector of residuals with € ~ N(0,

I v 0%.) where Iis an identity matrix of size N.

Structured GBLUP Model

We used a GBLUP approach where subgroup-specific
marker effects were estimated. The marker effects are

described as the sum of common effects for all groups
and group-specific random deviation. The structured

GBLUP model can be represented as:

y=lp+u, +u +e, (7]

where y, ., is the vector of mean yield for each genotype
in all the environments (i.e., the BLUEs from a model
accounting for field design and environment) of length
N (N = population size or number of genotypes in the
set); 1, is a vector of ones of length N; p is the overall
mean; U isa random vector of genotypic predic-

. 5 . .
tors with u ~ N(0,Ko? ), where K.y is the realized
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additive relationship matrix estimated as in the overall
GBLUP model; u, ., is a random vector for the group-
specific genotypic predictors; and u, ~ N(0, K,), where
K, is a block diagonal matrix, with each block being the
realized additive relationship matrix estimated for each
specific group with a group variance and off-diagonal
zeros. Assuming two groups, K| is:

o, X, X/ 0

0 o, X, X,
K = , (8]
p

where o> and 0‘212 are the genetic variance specific to Groups
1 and 2, respectively, and p is the number of markers. In this
model, 1, allows information to be shared between groups,
whereas u, captures group-specific effects. For this model,
we used the BGLR package (de los Campos and Pérez, 2010)
in R software (R Development Core Team, 2018).

Within-Population Optimization

Three strategies were used to optimize the TR. For each
strategy, a GBLUP model was fitted by the r#BLUP pack-
age (Endelman, 2011) in R software (R Development
Core Team, 2018). The predictive ability was estimated

as the correlation between predicted and observed geno-
typic values obtained via cross-validation (Burguefio et
al., 2012; De Leon et al., 2016). Models were compared in
terms of their predictive ability to random samples of the
same size and to using all the individuals in the TR.

Strategy 1: Grouping Based on Genetic Relationship
Wheat Population. A clustering algorithm with the real-
ized additive relationship matrix was used to group indi-
viduals in the IWBP TR population with the cluster package
(Kaufman and Rousseeuw, 1990) in R software (R Develop-
ment Core Team, 2018). The Ward hierarchical agglomera-
tive method with the pseudo-F statistic was used to group
similar individuals. The overall GBLUP model and the
structured GBLUP model with groups as classes were used
to predict genotypic values in the whole population.

Rice Population. The IRBP was grouped by subspe-
cies: indica or tropical japonica. Given the high level of
allelic phasing in the rice population, several dataset
models were compared: (i) SNP, | to predict all individu-
als, (i) SNP, | to predict indica individuals, (iii) SNP, .
to predict tropical japonica individuals, (iv) SNP,, to pre-
dict tropical japonica individuals, and (v) SNP, to predict
indica individuals. The overall GBLUP model was used
to predict genotypic values in the rice population.

Strategy 2: Grouping Based on Trials (VWheat Only)
The wheat population was evaluated in multiple tri-

als, each having different phenotypic data quality. The
overall GBLUP model and the structured GBLUP model
that had field trials (EYT, AYT, and PYT) as classes were
compared to predict genotypic values in the whole popu-
lation (Fig. 1A).

Strategy 3: Grouping Based on Maturity (VWheat Only)

The advanced inbred lines were routinely grouped into early
or late maturity lines on the basis of their heading date.
Different breeding objectives for GY were then pursued for
each group: early-maturity lines (short-cycle lines) were
selected for high yield based on a large number of grains

per spike, whereas late-maturity lines (long-cycle lines) were
selected for high yield based on a large number of spikes.
Since different selection pressures have been imposed on the
two groups, the overall GBLUP model and the structured
GBLUP model that used maturity as classes were compared
to predict breeding values in the whole population.

Model Validation

Predictive ability was estimated as the correlation between
the predicted and observed genotypic values via Type 1
cross-validation (Legarra et al., 2008; Burgefio et al., 2012;
De Leon et al., 2016). A k-fold cross validation within TR
was used, following Burgueno et al. (2012). Briefly, the
observations were randomly divided into k nonoverlap-
ping subsets. Next, k —1 groups were used as training sets
and the remaining group was used as the validation set
(i.e., genotypic values were obtained for each individual in
the validation set). This procedure was followed until the
genotypic values of individuals in all k subsets had been
predicted. One hundred replications of the cross-validation
with k = 7 were performed and the correlation between the
predicted genotypic values and observed genotypic means
was used to estimate the predictive ability.

Opfimization of the TR to a Specific TE

For optimization of the TR to predict a specific TE, we
used 984 wheat lines of the EYT, AYT, PYT 2010, and
PYT 2011 as the TR and 369 PYT 2013 lines as the TE
(Fig. 1A). Four strategies were evaluated for the selection
of the training population; random selection, the genetic
relationships between the TR and the TE, or two optimi-
zation criteria: the CDmean proposed by Rincent et al.
(2012) and PEVmean.

Strategy 4: Selection Based on the Estimated Additive
Genetic Relationship

The optimized TR (OTR) was constructed by choosing
individuals from the TR on the basis of their high simi-
larity to the TE. Two criteria were used to define similar-
ity for each individual: the average relationship with the
TE (K ) and the median relationship with the TE (K ,).
The predictive ability of the OTR was evaluated for select-
ing the top 15, 20, ..., 100% individuals from the TR.

Strategy 5: Selection Based on the Weighted
Estimated Additive Genetic Relationship

Similar to Strategy 4, the OTR was constructed by choos-
ing individuals from the TR on the basis of their simi-
larity to the TE, but the weighted additive relationship
matrix (W) was used instead of the kinship matrix. The
weighted relationship matrix is used in a similar manner
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C5); field trials: elite yield trials (yef], advanced yield frials [AYT), preliminary yield trials from 2010 (PYT10), and preliminary yield frials from
2011 (PYT11); and maturity: short-cycle lines (SC) and long-cycle lines [LC)], and the structured mixed model best linear unbiased prediction
[GBLUP) model used for the within-population optimization for the wheat dataset.

to the taBLUP of Zhang et al. (2010) or the sBLUP of
Wang et al. (2018), with the difference being that we are
using this matrix to identify the most related individu-
als, but not in the prediction model. The genetic distance
between the TR lines and the TE lines was calculated

as the mean marker distance weighted by the estimated
marker effects with a modification of the variance esti-
mate of Endelman (2011):

. KM | X g = Xormgjokg .
Wij = Z % x U[k]
k=1 , (9]

where i is the i line of the TR, j is the j" line of the TE,

k is the k™ marker, XerR@IR “m) and Xerpmre m are the
genotypic matrices with the marker state (-1, 1), M is the
number of markers, and u is the vector of the estimated
marker effects. The mixed.solve function of the rrBLUP
package (Endelman, 2011) in R (R Development Core
Team, 2018) was used to estimate u. Three criteria were
used to define similarity: (i) the average relationship to
the TE (W), (ii) the median relationship to the TE (W, .)s
and (iii) a proportional stratified sampling based on the
average relationship to the TE and the groups defined in
Strategy 1 (W_). The predictive ability of the OTR was
evaluated for selecting the top 15, 20, and 100% individu-
als from the TR via the GBLUP models.

Strategy 6: Selection Based on the CDmean and
PEVmean Genetic Algorithms

The OTR was constructed by choosing individuals from
the TR according to a genetic algorithm that maximized
the precision of the prediction of the difference between
the values of each nonphenotyped individual (TE) and
the mean of the population of candidate individuals
(TR). We used the CDmean, defined as the squared cor-
relation between the true and the predicted contrast of
genetic values, and the PEVmean, defined as the vari-
ance of the distance between the true and the predicted

contrast of genetic values, as optimization criteria. The
optimization algorithm code was adapted from code
provided by R. Rincent (pers. comm., 29 May 2017) and
was implemented in R (R Development Core Team,
2018). The code is available as Supplemental File S1. For
each sample size and each criterion, 50 repetitions of the
algorithm with 800 iterations were used. The predictive
ability of the OTR was evaluated for selecting the top 15,
20, and 100% individuals from the TR.

Random Selection

Finally, a random selection of TR lines was used to pre-
dict the TE by taking subgroups of different sizes. For
subgroups with 15, 20, and 100% of the lines, GBLUP
models were trained and used to predict the TE.

RESULTS
Within-Population TR Optimization
Wheat Population

The predictive ability increased with the number of
individuals used in the TR (Fig. 3); however, after 600
individuals, the increase in predictive ability became
marginal. Some groups had higher predictive ability than
those obtained with either a random sample of the same
size or the entire TR (Fig. 3). Group 1 obtained from

the cluster analysis was better predicted than the other
cluster groups, AYT was better predicted than the other
trials groups, and the short-cycle lines were better than
the long-cycle lines. The highly predictive groups had
high within-population structure (Fig. 4) that was not
associated with yield (data not shown). The model that
includes the structure of the trials or cycle groupings
showed higher predictive ability than random samples of
the same size (Fig. 3).
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Rice Population

Using both indica and tropical japonica subspecies as

the TR population to predict all individuals resulted in a
high predictive ability (r = 0.8, Fig. 5A). Group member-
ship (i.e., indica or tropical japonica) was highly predict-
able but within-group predictions were low (Fig. 5B).
Furthermore, when individuals from both subspecies
were used to predict either indica (r = 0.53) or tropical
japonica (r = 0.37), the predictive ability was low. Finally,
when using only a subspecies to predict its own perfor-
mance, the predictive ability of both indica (r = 0.69) and
tropical japonica (r = 0.54, Fig. 5A) increased. There was
a strong population structure among rice subspecies that
was highly associated with GY (Fig. 5C).

Optimization of the TR to a Specific TE

The best OTR strategy was to use the average of the
weighted additive relationship matrix with a stratified
sampling accounting for genetic cluster (W, Fig. 6). The K
mean and K median were the worst optimization criteria
(Fig.6). The CDmean and PEVmean stragtegies were no bet-
ter than random selection but were better than K (Fig. 6).

DISCUSSION

Our study was able to first characterize the structure

of small, highly predictive training sets to design an
optimization strategy for identifying training sets for
forward prediction of specific testing sets. We propose
the use of a weighted relationship matrix in combination
with stratified sampling to optimize the TR. This strat-
egy is superior to random samples of the same size, the
use of all available individuals, and other optimization
strategies proposed in the literature. We discuss our find-
ings in the context of population sizes, the diversity and
structure of the TR, and relationship between the TR and

the TE and propose conditions (i.e., traits and popula-
tions) where we believe our strategy would be superior.

Size of the TR

We found an increase in predictive ability with larger
population sizes up to 600 individuals, which is similar
to other studies (Lorenzana and Bernardo, 2009, Asoro
et al,, 2011). It has been widely established that predictive
ability is higher when larger TRs are used (Muir, 2007;
Meuwissen, 2009; Asoro et al., 2011; Lorenz, 2013; Isidro
et al., 2015; Edwards et al., 2019); however, the relation-
ship between TR size and other factors such as genetic
relationship and population structure is less understood.
We were able to identify smaller groups of individuals
with high predictive ability (i.e., Group 1, AYT, short-
cycle lines, and the W, optimization strategy). These
groups made better predictions than random samples

of the same size and better predictions than all available
individuals in the population. Therefore, there is a trade-
off between population size and other factors that should
be considered when optimizing the TR.

Diversity and Population Structure of the TR

There are a few processes that are relevant to how diver-
sity affects the predictive ability of a TR. Diversity is a
necessary condition for marker effect estimations (Nor-
man et al., 2018) but how diversity is structured in the
population is also relevant (Isidro et al., 2015). The genetic
relationships among individuals are required for accu-
rate genomic predictions (Habier et al, 2007; Asoro et
al., 2011; Clark et al., 2012; Isidro et al., 2015; Edwards

et al., 2019) because a relationship matrix is used to bor-
row information from relatives for prediction. Therefore,
unrelated individuals can only be predicted by the mean
performance of the population in a GBLUP context.
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In a broader interpretation, marker effects are genetic-
background-dependent (Asoro et al., 2011; Toosi et al.,
2010). Different levels of genetic relationship such as those
created by family relationships can also create population
structure (Wiirschum et al., 2017; Schmidt et al., 2016).
The level of population structure determines the optimal
prediction strategy (Isidro et al., 2015) and different strat-
egies have been proposed to deal with population struc-
ture such as prediction within families (Wiirschum et al.,
2017) or groups (Norman et al., 2018), prediction of group
performance [i.e., compressed BLUP, (Wang et al., 2018)]
or prediction of group performance and within-group
deviation [structured GBLUP (de los Campos and Pérez,
2010)]. We evaluated these processes in two species with
different levels of population structure and then proposed
a new strategy for dealing with population structure that
is more effective for forward prediction.

We found strong population structure in opposite
phases in rice that was associated with the phenotype. This
population structure overestimated the overall prediction
accuracy (i.e., r = 0.85) by being accurate in predicting
group membership and performance but being a poor
predictor of within-group performance (i.e., 7 < 0.5). We
show the effect of strong population structure on overall,
group, and within-group predictions in a constructed
example (Fig. 7). When population structure is associated
with the phenotypic trait of interest, the model might be
accurate at predicting group membership and group per-
formance but extremely poor at predicting within-group
performance. Group performance is relevant for predict-
ing traits with low heritability that are hard to predict in
general and where individuals within a group may act as

pseudo-replications of family or groups, improving overall
prediction accuracy (Wang et al., 2018). When the groups
are families, average family performance can be easily
predicted as the average performance of both parents

and is therefore less relevant (Wiirschum et al., 2017). For
example, in a broader case, identifying indica and tropi-
cal japonica individuals and predicting all individuals in
each subspecies as the mean performance of their group
had no practical relevance. Because population structure
can create a challenge for predictions when markers are in
opposite phases among subpopulations (Toosi et al., 2010;
Asoro et al., 2011; Lopez-Cruz et al., 2015), within-family
or within-group prediction might be more effective. Over-
estimation of the predictive accuracy was also observed
by Schmidt et al. (2016), who combined spring and winter
barley (Hordeum vulgare L.). Therefore, overall predictions
with a strong population structure that is associated with
the phenotype are challenging.

On the other hand, all the small groups that were
highly predictive in our study (i.e., Group 1, AYT, and short-
cycle lines) shared a low level of within-group population
structure that was created by family relationships and was
not associated with the phenotype. The presence of low
levels of population structure that is not associated to the
phenotype creates optimal prediction conditions (Fig. 7),
where enough diversity is present to estimate marker effects
and there is a high likelihood of each individual in the TE
having a relative represented in the TR. Overall predictions
in these cases can benefit from larger population sizes.

Furthermore, structured GBLUP models outper-
formed overall predictions in most of our situations
by including a group effect as well as within-group
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deviations. Marker-independent groups are more effec-
tive than groups based on marker-only information,
probably because these groups provide redundant infor-
mation that is already accessible from the relationship
matrix. Other studies have shown that considering popu-
lation structure improves prediction ability (Isidro et al.,
2015; Rincent et al., 2017; Norman et al., 2018); therefore,
population structure should play a key role in the strate-
gies used to build OTRs for genomic selection (Asoro

et al., 2011; Crossa et al., 2014; Isidro et al., 2015, Lorenz
and Nice, 2017; Rincent et al., 2017).

The Relationship between TR and TE

One of the main factors driving the trade-offs among
population size, diversity, and population structure is the
relationship between the TR and the TE (Habier et al.,

2007, 2013; Crossa et al., 2010, 2014; Lorenz et al., 2012;
Pszczola et al., 2012). Training sets that are more related
to the testing sets have higher predictive ability (Crossa
et al., 2014; Lorenz and Smith, 2015; Riedelsheimer et
al., 2013). Furthermore, Isidro et al. (2015) concluded
that an optimal design for the TR should minimize the
relationships among the genotypes in the TR (i.e., the
high diversity within the TR) while maximizing the rela-
tionship between the TE and the TR. Several methods
have been proposed to optimize the TR in this context
(Rincent et al., 2012, 2017; Isidro et al., 2015) with trait-
and population-structure-dependent results. We used
both a within-TR cross-validation and an independent
forward TE approach to evaluate these effects and found
that genetic relationship between TR and TE is one of
the most relevant properties of the TR for increasing
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predictive ability. We proposed an optimization strategy
that outperformed previous methods. The best optimiza-
tion strategy was the weighted relationship matrix with
stratified sampling. The CDmean and PEVmean methods
outperformed the relationship matrix (K) method, as in
Rincent et al. (2012). However, the weighted relationship
matrix with stratified sampling was superior to CDmean
and PEVmean. Both CDmean and PEVmean have shown
limited success when population structure is present
(Isidro et al., 2015). We believe that proper modeling of
the population structure is one of the main reasons for
the success of our strategy. Estimations of the predictive
ability of the CDmean strategy can be biased in the opti-
mization phase if the search space is not large enough in
terms of the number of starting points and iterations. We
believe that our CDmean estimations are appropriate,
the number of iterations used were based on achieving

a plateau in the predictive ability for each population
size, and the number of starting points was increased
until consistent estimations of the predictive ability were
found for each population size (Supplemental Fig. S1).

The region of the genome where individuals are more
similar is more relevant than being similar across the
genome. We found that a weighted genetic relationship
matrix (W) outperformed the genetic relationship matrix
(K). This shows that the kinship matrix per se is not a good
indicator of groups of individuals with different marker
effect responses for relevant phenotypic traits. Zhang et
al. (2010) proposed and explored the idea of a weighted
relationship matrix but in a different context. They found
that the use of a trait-specific marker information matrix
(taBLUP) for predictions improved the predictive ability
over the GBLUP model. We used the same general idea
of the taBLUP but with a few modifications. Genome-
wide estimations of marker effects were used instead of
grouping markers through previous identification of the
relevant markers by genome-wide association studies.
Furthermore, instead of using the weighted matrix for the
prediction model, we used it in the sampling strategy of
the TR to decide which individuals are the most related to
the TE (i.e., W strategy). This OTR has higher predictive
ability than random samples of the same size and higher
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predictive ability than including all available individuals
from the TR. This strategy is probably better suited for
complex quantitative traits because it uses a genome-wide
approach for marker effect estimation (Zhang et al., 2010).
Other strategies for weighting the relationship matrix, such
as taBLUP and sBLUP will be more effective for oligogenic
traits (Wang et al., 2018). Furthermore, because bin-opti-
mized quantitative trait nucleotides from genome-wide
association studies are optimized to account for linkage
disequilibrium structures in sSBLUP, sBLUP will perform
better than taBLUP (Wang et al., 2018). The W TR opti-
mization strategy that we proposed could be used with the
sBLUP weighted matrix instead of the genomic-weighted
matrix to predict oligogenic traits in future studies.

The best optimization strategy in our study included
a weighted matrix to evaluate relationship among indi-
viduals, along with stratified sampling (W_). We used
the general ideas of the compressed BLUP (Wang et
al., 2018) and structured GBLUP (de los Campos and
Pérez, 2010) approaches but modified them to optimize
the TRs. Instead of using the clusters to predict group
performance, as in the compressed BLUP (Wang et al.,
2018), or group and within-group performance, as in the
structured GBLUP (de los Campos and Pérez, 2010), we
used a clustering strategy to obtain a stratified sample of
the TR that was more similar to Isidro et al (2015). The
stratified sampling approach is superior to sampling the
most related individuals overall because it produces a
better representation of all the linkage disequilibrium
structures in the TR that are relevant for the TE. How-
ever, when the TR and TE are conceptually the same as
in x-fold validations or replaced phenotyping strategies,
the W_ method performs similar to the PEVmean and
CDmean methods. We showed the effect of different
sampling strategies for forward and x-fold validation
strategies (Supplemental Fig. S2). When the TE is con-
ceptually different from the TR or has a lower level of
relationship with the TR (i.e., similar to when forward
predictions are used in GS to predict future popula-
tions), the W is the best strategy (Supplemental Fig.
S2A). However, when an x-fold validation is used, such
as in replaced phenotyping strategies, the W, strategy
has no advantage over the other methods (Supplemental
Fig. 2B). Stratified sampling with the weighted relation-
ship matrix (W) is therefore especially relevant when
forward predictions are attempted with future TEs, as in
our case. In our study, we optimized the TR for a forward
prediction three generations apart (i.e., a future PYT).
This strategy was able to capture the relevant genomic
regions and better estimate the marker effects increasing
predictive ability. Therefore, smaller, OTR can be used to
improve predictive ability. This indicates that neither the
general relationship nor the population size per se are the
best indicators of predictive ability. Optimized popula-
tions perform better than random samples of the popula-
tion of the same size but are more relevant and they have
higher predictive ability than the use of all individuals
available from the TR.

CONCLUSIONS

In summary, we proposed a new strategy to optimize
TRs to predict specific TEs in a forward approach. Our
strategy of using a weighted relationship matrix in com-
bination with a stratified sampling approach was the best
approach for optimizing the TR. This strategy performed
better than a random sample of the population of equal
size, use of all the individuals available in the train-

ing population, or use of the relationship matrix, the
CDmean, or PEVmean to choose the individuals to make
up the TR. This strategy will be superior for complex
quantitative traits and when small levels of population
structure are present, such as with the familial relation-
ship structures common in plant breeding populations.
For oligogenic traits, a similar sampling strategy could
be implemented but with the sBLUP weighted matrix
instead of genome-wide marker effects. Our strategy

will perform similar to the CDmean or PEVmean when
population structure is absent or if the TE has conceptu-
ally the same structure as the TRs.

Supplemental Information

Supplemental File S1. The optimization algorithm code
used for the CDmean and PEVmean optimization. This
code was adapted from a code provided by R. Rincent
(pers. comm., 29 May 2017) and was implemented in R
(R Development Core Team, 2018).

Supplemental Fig. S1. (A) Coeflicients of determina-
tion in each iteration and by training population size. (B)
Predicted ability for CDmean, PEVmean, and random
selection for each training population size.

Supplemental Fig. S2. Optimization of the training
population using two overall strategies for two partitions
of the TR: (i) predicting the least related individuals and
(ii) predicting individuals from the same conceptual
population as in an x-fold validation or replaced pheno-
typing. (A) Principal component of the TR, highlighting
the partition strategies. (B) Predictions based on the
average (K ) or median (K ,) realized genetic relation-
ship of TR individuals to the TE. (C) Predictions based
on the average (W or median (W, ) weighted genetic
relationship of TR individuals to the TE, or the average
W with a stratified sampling considering genetic cluster
(W,). All OTRs are compared with random samples of
the same size (the mean performance of 100 random
samples is in black and the range is shaded).
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